

ALLIANCE

General Certificate of Education

Mathematics 6360

MFP1 Further Pure 1

Mark Scheme

2009 examination – January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

			www
		MFP1 - A	AQA GCE Mark Scheme 2009 January
Key to mark	scheme and abbreviations used in mark	ting	
N Æ	······································		
M	mark is for method	1	/1 1
m or dM	mark is dependent on one or more M ma		thod
A	mark is dependent on M or m marks and		1
B	mark is independent of M or m marks an	id is for method a	and accuracy
E	mark is for explanation		
$\sqrt{100}$ or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
-x EE	deduct x marks for each error	G	graph
NMS	no method shown	с	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

atitised					MFP1	- AQA GCE Mark Scheme 2009 January
Second increment is $0.2\sqrt{1+0.2^2}$ M1A2,1F5A1 if accuracy lost; ft num errorTotal5Total5A2,1F5A1 if accuracy lost; ft num errorTotal5Total5Total5A1 if accuracy lost; ft num errorTotal5Al if accuracy lost; ft num errorTotal5Al if accuracy lost; ft num errorTotal5Al if error in (a) ft wrong value for sumProduct is 13 So $c = 13$ B1 B1F4ft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and 1 parts 12 + 3b = 0, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F A1 A1 A1 A1 A2 + 5 Decimals/degrees penalised at 5^{th} mark (or $2n\pi$) at any stageTotal5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total <th>l</th> <th></th> <th></th> <th></th> <th></th> <th>athsold</th>	l					athsold
Second increment is $0.2\sqrt{1+0.2^2}$ M1A2,1F5A1 if accuracy lost; ft num errorTotal5Total5A2,1F5A1 if accuracy lost; ft num errorTotal5Total5Total5A1 if accuracy lost; ft num errorTotal5Al if accuracy lost; ft num errorTotal5Al if accuracy lost; ft num errorTotal5Al if error in (a) ft wrong value for sumProduct is 13 So $c = 13$ B1 B1F4ft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and 1 parts 12 + 3b = 0, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F A1 A1 A1 A1 A2 + 5 Decimals/degrees penalised at 5^{th} mark (or $2n\pi$) at any stageTotal5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total <th>2</th> <th>Solution</th> <th></th> <th>Marks</th> <th>Total</th> <th>Comments</th>	2	Solution		Marks	Total	Comments
Second increment is $0.2\sqrt{1+0.2^2}$ M1A2,1F5A1 if accuracy lost; ft num errorTotal5Total5A2,1F5A1 if accuracy lost; ft num errorTotal5Total5Total5A1 if accuracy lost; ft num errorTotal5Al if accuracy lost; ft num errorTotal5Al if accuracy lost; ft num errorTotal5Al if error in (a) ft wrong value for sumProduct is 13 So $c = 13$ B1 B1F4ft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and 1 parts 12 + 3b = 0, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F A1 A1 A1 A1 A2 + 5 Decimals/degrees penalised at 5^{th} mark (or $2n\pi$) at any stageTotal5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total5Total <td>1</td> <td>First increment is 0.2, so $y \approx 1.2$</td> <td></td> <td>B1B1</td> <td></td> <td>PI; variations possible here</td>	1	First increment is 0.2, so $y \approx 1.2$		B1B1		PI; variations possible here
$\approx 0.203 961$, so $y \approx 1.403 96$ A2,1F5A1 if accuracy lost; ft num errorTotal52(a)Other root is $2 - 3i$ B11(b)Sum of roots = 4 So $b = -4$ B1F B1Fft error in (a) ft wrong value for sumProduct is 13 So $c = 13$ B1 B1F4ft error in (a) ft wrong value for productAlternative: Substituting $2 + 3i$ into equation Equating R and I parts $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F A1F(4) ft wrong value for b Total5Decimals/degrees penalised at 5^{th} mark Introduction of $n\pi$ M1 M1Including dividing all terms by 33 $\tan \frac{\pi}{3} = \sqrt{3}$ Introduction of $n\pi$ M1 A2,1F5Allow +, - or \pm ; A1 with dec/deg; ft wrong first solution•Total5A1 Correct expressions substituted $Correct expansions$ A1 B1 A1 A1A2,1F(b) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ $Correct expansionsM1A1B1Answer convincingly obtainedM1A1Condone S_{2n} - S_{n+1} here$		Second increment is $0.2\sqrt{1+0.2^2}$		M1		
Image: Constant of the second system of the second syst		$\approx 0.203\ 961$, so $y \approx 1.403\ 96$			5	A1 if accuracy lost; ft num error
(b)Sum of roots = 4 So $b = -4$ BIF BIFIf error in (a) ft wrong value for sumProduct is 13 So $c = 13$ B1 B1F4ft error in (a) ft wrong value for sumAlternative: Substituting 2 + 3i into equation Equating R and I parts $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ M1 M1 M1 M1 M1 M1 $-5 + 2b + c = 0$, so $c = 13$ A1F A1F(4)ft wrong value for b 3 $\tan \frac{\pi}{3} = \sqrt{3}$ Introduction of $n\pi$ B1 M1 M1 M1Decimals/degrees penalised at 5 th mark (or $2n\pi$) at any stageGoing from $\frac{\pi}{2} - 3x$ to x $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F A2,1F5Allow +, - or \pm; A1 with dec/deg; ft wrong first solution4(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ Correct expressions substituted Correct expressions substituted Correct expansions $\Sigma 1 = n$ Answer convincingly obtainedM1 A1Condone $S_{2n} - S_{n+1}$ here			Total	-	5	
So $b = -4$ BIFIf wrong value for sumProduct is 13 So $c = 13$ B1 B1Fft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and I parts $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ M1 m1 A1F12 + 3b = 0, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F(4)3 $tan \frac{\pi}{3} = \sqrt{3}$ Introduction of $n\pi$ Going from $\frac{\pi}{2} - 3x$ to x $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ B1 A2,1FDecimals/degrees penalised at 5 th mark (or $2n\pi$) at any stage4(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ Correct expressions substituted Correct expressions substituted Correct expansions $\Sigma 1 = n$ Answer convincingly obtainedM1 M1 A1 A1At least for first two terms(b) $S_n - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here	2(a)	Other root is 2 – 3i		B1	1	
So $b = -4$ BIFIf wrong value for sumProduct is 13 So $c = 13$ B1 B1Fft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and I parts $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ M1 m1 A1F12 + 3b = 0, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F(4)3 $tan \frac{\pi}{3} = \sqrt{3}$ Introduction of $n\pi$ Going from $\frac{\pi}{2} - 3x$ to x $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ B1 A2,1FDecimals/degrees penalised at 5 th mark (or $2n\pi$) at any stage4(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ Correct expressions substituted Correct expressions substituted Correct expansions $\Sigma 1 = n$ Answer convincingly obtainedM1 M1 A1 A1At least for first two terms(b) $S_n - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here	(L)	Sum of roots $= 4$		D1E		ft array in (a)
Product is 13 So $c = 13$ B1 B1F4ft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and I parts $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ M1 m1 A1Fft wrong value for product $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ A1F A1F(4)ft wrong value for b 3 $\tan \frac{\pi}{3} = \sqrt{3}$ Introduction of $n\pi$ Going from $\frac{\pi}{2} - 3x$ to x $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ B1 A2,1FDecimals/degrees penalised at 5 th mark (or $2n\pi$) at any stage $4(a)$ $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ Correct expressions substituted Correct expansions $\Sigma 1 = n$ Answer convincingly obtainedM1 A1A1 A1(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here	(0)					
So $c = 13$ B1F4ft wrong value for productAlternative: Substituting 2 + 3i into equation Equating R and I partsM1 m1 12 + 3b = 0, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ M1 A1FA1 (4)Total5Total5Total5Coincident of $n\pi$ Going from $\frac{\pi}{2} - 3x$ to x $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ M1 A2,1FDecimals/degrees penalised at 5 th mark (or $2n\pi$) at any stageTotal5Total5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionTotal5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionTotal5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionTotal5A(a)5A(b)5A(b)5A(c)6Total5A(a)5A(b)5A(b)6A(c)6A(c)6A(b)6A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)4A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7A(c)7 <tr< td=""><td></td><td>50 0 - 4</td><td></td><td>DII</td><td></td><td></td></tr<>		50 0 - 4		DII		
Alternative: Substituting 2 + 3i into equation Equating R and I parts $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ M1 m1 A1Fft wrong value for b $12 + 3b = 0$, so $b = -4$ $-5 + 2b + c = 0$, so $c = 13$ Total5 3 $\tan \frac{\pi}{3} = \sqrt{3}$ Introduction of $n\pi$ Going from $\frac{\pi}{2} - 3x$ to x $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ B1 A2,1FDecimals/degrees penalised at 5 th mark (or $2n\pi$) at any stage Including dividing all terms by 3 Allow +, $-$ or \pm ; A1 with dec/deg; ft wrong first solution $4(a)$ $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ Correct expressions substituted Correct expansions $\Sigma 1 = n$ Answer convincingly obtainedM1 A1At least for first two terms(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here		Product is 13		B1		
Substituting 2 + 3i into equationM1M1Equating R and I partsm1 $12 + 3b = 0$, so $b = -4$ A1 $-5 + 2b + c = 0$, so $c = 13$ A1FTotal5Total5Total5Introduction of $n\pi$ M1Going from $\frac{\pi}{2} - 3x$ to x m1Introduction of $n\pi$ M1Going from $\frac{\pi}{2} - 3x$ to x m1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1FTotal5Image: A state of the state o		So <i>c</i> = 13		B1F	4	ft wrong value for product
Substituting 2 + 3i into equationM1M1Equating R and I partsm1 $12 + 3b = 0$, so $b = -4$ A1 $-5 + 2b + c = 0$, so $c = 13$ A1FTotal5Total5Total5Introduction of $n\pi$ M1Going from $\frac{\pi}{2} - 3x$ to x m1Introduction of $n\pi$ M1Going from $\frac{\pi}{2} - 3x$ to x m1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1FTotal5Image: A state of the state o		Alternative:				
$12 + 3b = 0$, so $b = -4$ A1A1 $-5 + 2b + c = 0$, so $c = 13$ A1F(4)ft wrong value for b Total53 $\tan \frac{\pi}{3} = \sqrt{3}$ B1Decimals/degrees penalised at 5 th markIntroduction of $n\pi$ M1(or $2n\pi$) at any stageGoing from $\frac{\pi}{2} - 3x$ to x m1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or \pm ; A1 with dec/deg; ft wrong first solution 4(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1At least for first two termsCorrect expressions substituted Correct expansions $\Sigma 1 = n$ M1At least for first two terms(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here				M1		
$-5 + 2b + c = 0$, so $c = 13$ A1F(4)ft wrong value for b TotalTotal5 3 $\tan \frac{\pi}{3} = \sqrt{3}$ B1Decimals/degrees penalised at 5 th markIntroduction of $n\pi$ M1(or $2n\pi$) at any stageGoing from $\frac{\pi}{2} - 3x$ to x m1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, $-$ or \pm ; A1 with dec/deg; ft wrong first solution $4(a)$ $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1At least for first two termsCorrect expressions substituted $\Sigma 1 = n$ Answer convincingly obtainedM15(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here		Equating R and I parts		m1		
Total53 $\tan \frac{\pi}{3} = \sqrt{3}$ B1Decimals/degrees penalised at 5 th markIntroduction of $n\pi$ M1(or $2n\pi$) at any stageGoing from $\frac{\pi}{2} - 3x$ to x m1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or ±; A1 with dec/deg; ft wrong first solution54(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1 B1 Correct expressions substituted $\Sigma 1 = n$ A1 B1 A1Answer convincingly obtainedA1 A15(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here						
3 $\tan \frac{\pi}{3} = \sqrt{3}$ B1Decimals/degrees penalised at 5 th mark (or $2n\pi$) at any stageGoing from $\frac{\pi}{2} - 3x$ to x M1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionTotal54(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1 B1 Answer convincingly obtainedb) $S_{2n} - S_n$ attemptedM1At least for first two terms(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here		-5 + 2b + c = 0, so $c = 13$		A1F		ft wrong value for <i>b</i>
Introduction of $n\pi$ M1(or $2n\pi$) at any stageGoing from $\frac{\pi}{2} - 3x$ to x m1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or \pm ; A1 with dec/deg; ft wrong first solutionImage: the second			Total		5	
Going from $\frac{\pi}{2} - 3x$ to xm1Including dividing all terms by 3 $x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionTotal54(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1Correct expressions substituted Correct expansionsm1At least for first two terms $\Sigma 1 = n$ B1A15Answer convincingly obtainedA15(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here	3	$\tan\frac{\pi}{3} = \sqrt{3}$		B1		Decimals/degrees penalised at 5 th mark
$x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionImage: the two series of two		Introduction of $n\pi$		M1		(or $2n\pi$) at any stage
$x = \frac{\pi}{18} + \frac{1}{3}n\pi$ A2,1F5Allow +, - or ±; A1 with dec/deg; ft wrong first solutionImage: the two series of two		Going from $\frac{\pi}{2} - 3x$ to x		m1		Including dividing all terms by 3
Total54(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1Correct expressions substitutedm1At least for first two terms $\Sigma 1 = n$ B1B1Answer convincingly obtainedA15(b) $S_{2n} - S_n$ attemptedM1		-		A2,1F	5	
4(a) $S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$ M1Correct expressions substitutedm1At least for first two termsCorrect expansionsA1B1 $\Sigma 1 = n$ B1Answer convincingly obtainedA1(b) $S_{2n} - S_n$ attemptedM1		10 5	Total		5	
Correct expressions substituted Correct expansions $\Sigma 1 = n$ Answer convincingly obtainedm1 A1 B1 A1At least for first two terms(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here	4(a)	$S_n = 3\Sigma r^2 - 3\Sigma r + \Sigma 1$		M1		
Correct expansionsA1 $\Sigma 1 = n$ B1Answer convincingly obtainedA15AG(b) $S_{2n} - S_n$ attemptedM1Condone $S_{2n} - S_{n+1}$ here	.()					At least for first two terms
$ \begin{array}{c c} \Sigma 1 = n \\ Answer convincingly obtained \\ \textbf{(b)} S_{2n} - S_n \text{ attempted} \\ \end{array} \begin{array}{c c} B1 \\ A1 \\ S1 \\ S2n - S_n \text{ attempted} \\ \end{array} \begin{array}{c c} B1 \\ A1 \\ S1 \\ S2n - S_n \text{ attempted} \\ \end{array} \begin{array}{c c} B1 \\ A1 \\ S1 \\ S2n - S_n \text{ attempted} \\ \end{array} \begin{array}{c c} B1 \\ A1 \\ S1 \\ S2n - S_n \text{ attempted} \\ \end{array} $		A				
(b) $S_{2n} - S_n$ attempted M1 Condone $S_{2n} - S_{n+1}$ here						
		Answer convincingly obtained		A1	5	AG
	(b)	$S_{2n} - S_n$ attempted		M1		Condone $S_{2n} - S_{n+1}$ here
		Answer $7n^3$			2	

MFP1	(cont)
TATT. T T	(cont)

<u>IFP1 (cont</u> O	Solution	Marks	Total	Comments
		Marks	Total	Comments
5(a)(i)	$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 0 & 2k \\ 2k & 0 \end{bmatrix}$	B1	1	
(ii)	$\mathbf{A}^2 = \begin{bmatrix} 2k^2 & 0\\ 0 & 2k^2 \end{bmatrix}$	B2,1	2	B1 if three entries correct
(b)	$(\mathbf{A} + \mathbf{B})^2 = = \begin{bmatrix} 4k^2 & 0\\ 0 & 4k^2 \end{bmatrix}$	B2,1		B1 if three entries correct
	$\mathbf{B}^2 = \mathbf{A}^2$, hence result	B1B1	4	
(c)(i)	A^2 is an enlargement (centre <i>O</i>) with SF 2	M1 A1	2	Condone $2k^2$
(ii)	Scale factor is now $\sqrt{2}$	B1		Condone $\sqrt{2}k$
	Mirror line is $y = x \tan 22\frac{1}{2}^{\circ}$	M1A1	3	
	Total		12	
6(a)(i)	Asymptotes $x = 0, x = 2, y = 1$	B1×3	3	
(ii)	Intersections at $(1, 0)$ and $(3, 0)$	B1	1	
(iii)	At least one branch approaching asymptotes	B1		
	Each branch	B1×3	4	
(b)	0 < x < 1, 2 < x < 3	B1,B1	2	Allow B1 if one repeated error occurs, $eg \le for <$
	Alternative:			
	Complete correct algebraic method	M1A1	(2)	
	Total		10	
7(a)	Use of similar triangles or algebra	M1		Some progress needed
	Correct relationship established	m1A1		eg $\frac{r-a}{c} = \frac{b-a}{c-d}$
	Hence result convincingly shown	A1	4	AG
(b)(i)	$c = f(a) = 24, \ d = f(b) = -21$	B1,B1		
	$r = \frac{38}{15} (\approx 2.5333)$	B1F	3	Allow AWRT 2.53; ft small error
	1			
(ii)	$\beta = 20^{\frac{1}{3}} \approx 2.714(4)$	M1A1		Allow AWRT 2.71
	So $\beta - r \approx 0.181 \approx 0.18$ (AG)	A1	3	Allow only 2dp if earlier values to 3dp
	Total		10	

MFP1 - AQA GCE Mark Scheme 2009 January

1aths

IFP1 (cont)				40
Q	Solution	Marks	Total	Comments Comments
8(a)	$\int x^{-\frac{3}{4}} dx = 4x^{\frac{1}{4}} (+ c)$	M1A1		M1 if index correct
	This tends to ∞ as $x \to \infty$, so no value	A1F	3	ft wrong coefficient
(b)	$\int x^{-\frac{5}{4}} \mathrm{d}x = -4x^{-\frac{1}{4}} (+c)$	M1A1		M1 if index correct
	$\int x^{-\frac{5}{4}} dx = -4x^{-\frac{1}{4}} (+ c)$ $\int_{1}^{\infty} x^{-\frac{5}{4}} dx = 0 - (-4) = 4$	A1F	3	ft wrong coefficient
(c)	Subtracting 4 leaves ∞ , so no value	B1F	1	ft if c has 'no value' in (a) but has a finite answer in (b)
	Total		7	
9(a)	Asymptotes are $y = \pm \sqrt{2}x$	M1A1	2	M1A0 if correct but not in required form
(b)	Asymptotes correct on sketch	B1F		With gradients steeper than 1; ft from $y = \pm mx$ with $m > 1$
	Two branches in roughly correct positions Approaching asymptotes correctly	B1 B1	3	Asymptotes $y = \pm mx$ needed here
(c)(i)	Elimination of y Clearing denominator correctly $x^2 - 2cx - (c^2 + 2) = 0$	M1 M1 m1A1	4	Convincingly found (AG)
(ii)	Discriminant = $8c^2 + 8$ > 0 for all <i>c</i> , hence result	B1 E1	2	Accept unsimplified OE
(iii)	Solving gives $x = c \pm \sqrt{2(c^2 + 1)}$	M1A1		
	$y = x + c = 2c \pm \sqrt{2(c^2 + 1)}$	A1	3	Accept $y = c + \frac{2c \pm \sqrt{8c^2 + 8}}{2}$
	Total		14	
	TOTAL		75	